Gold-Catalyzed Cycloisomerization of α-Functionalized Allenes to \(N \)-Hydroxypyrrrolines, Dihydroisoxazoles and Dihydro-1,2-oxazines

Christian Winter und **Norbert Krause**
Dortmund University of Technology, Organic Chemistry, 44227 Dortmund, Germany

Introduction

The gold-catalyzed *endo-* or *exo*-selective cycloisomerization of functionalized allenes is a highly valuable method for the synthesis of five- or six-membered oxygen-,[3,4] nitrogen-[12,13] or sulfur-containing[14] heterocycles containing one or several stereogenic centers. Since the gold-catalyzed cycloisomerization of allenenes is so far limited to the synthesis of heterocycles containing just one heteroatom, we decided to examine the cyclization of various allenyl hydroxylamines.[5] These investigations are particularly interesting due to the ambident nature of hydroxylamines which can result in the formation of different heterocycles.

Results and Discussion

Cycloisomerization of Allenic Hydroxylamines to \(N \)-Hydroxypyrrrolines

The cycloisomerization of allenic hydroxylamine 1a selectively led to the formation of \(N \)-hydroxypyrrroline 2a with full axis-to-center chirality transfer. The best result was obtained by using 1.5 mol% AuCl, whereas the cationic gold complexes \([\text{Ph}_3\text{PAuBF}_4]\), \(A^1\) or \(B^1\) led to incomplete conversion and/or decomposition.

Cycloisomerization of Allenic Hydroxylamine Ether to Dihydro-1,2-oxazines or Dihydroisoxazoles

By employing AuCl or AuCl\(_2\), the cycloisomerization of an allenyl hydroxylamine ether 3a resulted in a mixture of dihydrooxazine 4a and dihydroisoxazole 5a. Fortunately, the use of cationic complex \(A\) led nearly exclusively to the formation of dihydroisoxazoles 5a-5g.

The high diastereomeric excess in case of 5a-5c can be explained by coordination of precatalyst \(A\) to the allenic double bond adjacent to the heteroatoms. After 5-*endo*-cyclization the bulky gold moiety is preferably situated trans to the group \(R^3\) in order to minimize steric interactions.

Cycloisomerization of Allenic Hydroxylamines to Dihydro-1,2-oxazines

The selective formation of dihydro-1,2-oxazines 7a-7d was achieved by treating the carbamates 6a-d with AuCl. In contrast to the formation of dihydroisoxazoles 5, the use of cationic gold precatalysts led to decomposition of the substrates.

Conclusion

Three different chiral heterocycles are obtained by highly efficient regio- and stereoselective gold-catalyzed cycloisomerization of allenyl hydroxylamine derivatives. In all cases, nitrogen acts as the nucleophile and attacks the allene in a 5- or 6-*endo*-cyclization. Careful choice of the gold precatalyst and of the protecting group at the nitrogen are the key factors for controlling the regioselectivity.

References

Acknowledgment: We thank A. E. Echavarren for samples of gold precatalysts \(A\) and \(B\).